
Linear Classification

Zhiyao Duan

Associate Professor of ECE and CS

University of Rochester

Some figures are copied from the following books
• LWLS - Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, Thomas B. Schön, Machine Learning: A First Course for

Engineers and Scientists, Cambridge University Press, 2022.

• Mitchell - Tom M. Mitchell, Machine Learning, McGraw-Hill Education, 1997.

Classification Boundary

• Classification: given training examples 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
, learn 𝑓: 𝒙 ↦ 𝑦,

where 𝑦 is categorical

• If 𝒙 is numerical and has 𝑑 attributes, then it is a 𝑑-dimension vector

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 2

(Fig. 2.5(a) in LWLS)

Nearest Neighbor Decision Tree (fully grown)

(Fig. 2.11(a) in LWLS)

Linear Classification Boundary

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 3

(Fig. 3.6 in LWLS)

Logistic Regression

Note: Logistic regression is in fact a classification method, not a regression method

Let’s draw a linear boundary

• A linear boundary is a hyperplane, represented as a linear equation
𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑑𝑥𝑑 = 0

• It separates the space into two half spaces

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 4

2

1

𝑥1

𝑥2

0

2 − 𝑥1 − 2𝑥2 = 0

> 0

< 0

Linear Boundary

• A linear boundary is a linear equation:
𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑑𝑥𝑑 = 0

𝑤0 𝑤1 … 𝑤𝑑

1
𝑥1

⋮
𝑥𝑑

= 0, or 𝒘𝑇 1
𝒙

= 0

• 𝒘 is the weight vector

•
1
𝒙

 is the extended feature vector (𝑑 + 1 dimensional)

• For convenience, we will view 𝒙 as the extended feature vector

𝒙 = 𝑥0, 𝑥1, … , 𝑥𝑑
𝑇 where 𝑥0 = 1

• So 𝒘𝑇𝒙 = 0 on the boundary (hyperplane), 𝒘 is the normal vector

• 𝒘𝑇𝒙 > 0 on one side and 𝒘𝑇𝒙 < 0 on the other side

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 5

Geometry of the Extended Space

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 6

Classification
hyperplane

always passing
through origin

Hyperplane of
data points

Normal vector of the
classification hyperplane

𝑥0

𝑥1

𝑥2

Perceptron

• Perceptron is a function that maps 𝒙 to either 1 or -1
𝑓 𝒙 = 𝑠𝑖𝑔𝑛(𝒘𝑇𝒙)

• This is a linear binary classifier where one side of the classification
boundary is 1 and the other side is -1

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 7

Perceptron’s Representation Power

• Basic logic operations: AND, OR, NOT

– They are all linearly separable

• How about XOR?

– Not linearly separable

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 8

-0.8

1

0.5

x1

0.5
x2

AND

𝑥1

𝑥2

+-

- -

𝑥1

𝑥2

-+

- +

How to Learn a Perceptron?

• Perceptron is a function mapping 𝒙 to either 1 or -1
𝑓 𝒙 = 𝑠𝑖𝑔𝑛(𝒘𝑇𝒙)

• How to learn this function, i.e., the weights 𝒘?

• One idea is to start from an initial vector 𝒘, and then iteratively update its
value till some condition

• This is an optimization procedure

– Initialization: Random?

– Iterative updates: How?

– Termination condition: What?

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 9

Perceptron Update Rule

• Initialization: Random

• Iterative updates: Update 𝒘 for each misclassified training

example

• Termination condition: Till all examples are correctly classified
– Would not terminate if training examples are not linearly separable

• Idea
– For a misclassified positive example,

update 𝒘 along the example’s direction

– For a misclassified negative example,

update w along the example’s reverse direction

𝒘 ← 𝒘 + 𝜂 y i − 𝑓 𝒙 i 𝒙(i)

Step size 𝜂 > 0, usually small

• Always converges for linearly separable cases!

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 10

0

𝑥1

𝑥0

How about non-linearly separable cases?

• Linear classification may still be desirable even if it
misclassifies some training examples

• The perceptron update rule does not work in this case!
Why?

– Each update considers only one misclassified training example.

• How about we consider all misclassified training example
together for each update?

• One thought: perhaps update 𝒘 to reduce the number of
misclassifications?

– Doesn’t work because this quantity is piecewise constant!

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 11

Perceptron Criterion Function

• Minimize perceptron criterion function

𝐸 𝒘 = ෍

𝑖 ∈ 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

−𝒘𝑇𝒙(𝑖) y 𝑖 − 𝑓 𝒙 𝑖

• Computer gradient w.r.t. 𝒘

𝛁𝒘𝐸 𝒘 = ෍

𝑖 ∈ 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

−𝒙(𝑖) y 𝑖 − 𝑓 𝒙 𝑖

• Update rule (via gradient descent)

𝒘 ← 𝒘 + 𝜂 ෍

𝑖 ∈ 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝒙(𝑖) y 𝑖 − 𝑓 𝒙 𝑖

• Terminate till classification error is acceptable
ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 12

2 (pos example) or -2 (neg example)

Comparing the Two Update Rules

• Perceptron update rule

𝒘 ← 𝒘 + 𝜂 y 𝑖 − 𝑓 𝒙 𝑖 𝒙(𝑖), ∀𝑖 ∈ 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

• Perceptron criterion function update rule

𝒘 ← 𝒘 + 𝜂 ෍

𝑖 ∈ 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝒙(𝑖) y 𝑖 − 𝑓 𝒙 𝑖

• The former can be viewed as a stochastic approximation of the true
gradient of the perception criterion function

– Also called stochastic gradient descent

• Using one example to approximate the gradient may be too
stochastic. Let’s use a few examples instead

– Batch processing:

𝒘 ← 𝒘 + 𝜂 ෍

𝑖 ∈𝑎 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝒙(𝑖) y 𝑖 − 𝑓 𝒙 𝑖

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 13

Another Loss Function

• For non-linearly separable cases, the perceptron criterion
update rule may still not converge if the termination
condition is not set appropriately

– Because correctly classified examples may be misclassified after
update!

• How about we define a loss function that considers all
training examples, including the correctly classified
ones?

• We hope 𝒘𝑇𝒙 is close to 𝑦 for all training examples

• Let’s use squared error (some definition divides it by 𝑁)

𝐸 𝒘 =
1

2
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 2

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 14

The Hypothesis Space

𝐸 𝒘 =
1

2
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 2

• Quadratic function of 𝒘

• Convex!

• Global minimum

(if it has a minimum)

• How to minimize 𝐸(𝒘)?

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 15

(Fig. 4.4 in Mitchell)

Delta Rule

• Also called the LMS (least-mean-square) rule, Widrow-Hoff rule)

• Minimize square error loss

𝐸 𝒘 =
1

2
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 2

• Computer gradient w.r.t. 𝒘

𝛁𝒘𝐸 𝒘 = ෍

𝑖=1

𝑁

−𝒙(𝑖) y 𝑖 − 𝒘𝑇𝒙 𝑖

• Update rule (via gradient descent)

𝒘 ← 𝒘 + 𝜂 ෍

𝑖=1

𝑁

𝒙(𝑖) y 𝑖 − 𝒘𝑇𝒙 𝑖

• Always converges, although may take a very long time

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 16

Delta Rule’s Stochastic Version

• Similar to the perceptron update rule, we could approximate the true
gradient of the squared error loss with the stochastic gradient computed
from a single training example, then the update rule is:

𝒘 ← 𝒘 + 𝜂𝒙(𝑖) y 𝑖 − 𝒘𝑇𝒙 𝑖

• We can also use a batch to have a better approximation

𝒘 ← 𝒘 + 𝜂 ෍

𝑖∈𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝒙(𝑖) y 𝑖 − 𝒘𝑇𝒙 𝑖

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 17

Another Way to Minimize Squared Error

𝐸 𝒘 =
1

2
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 2

=
1

2
𝑿𝒘 − 𝒚 2

where 𝑿 ∈ ℝ𝑁×(𝑑+1) is the extended training data matrix, 𝒚 ∈ {−1, 1}𝑁 is the

label vector

• This is the approximation error (L2 norm) of the linear equation system
𝑿𝒘 = 𝒚

• This error is minimized by the least-square solution
𝒘 = 𝑿𝑇𝑿 −1𝑿𝑇𝒚

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 18

Pseudo-inverse of 𝑿

Remarks on Squared Error Minimization

• Delta rule is preferred over the least-square solution,
because

– 𝑿𝑇𝑿 may be singular

– It avoids large matrix inverse

– Automatically copes with some computational problems due to
roundoff or truncation

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 19

• The solution 𝒘 found by minimizing

the squared error may not be
optimal in terms of minimizing the
classification error among all linear
classification methods, even for
linearly separable cases!

(Fig. 5.17 in Duda, Hart & Stork, Pattern Classification, 2001, Wiley)

Geometric Interpretation of Squared Error

• Let’s look at the 1d case

• 𝐸 𝒘 =
1

2
σ𝑖=1

𝑁 𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 2
 is fitting the training data

using linear regression with squared error

• Correctly classified examples (points far from origin) may
have a significant contribution to this loss!

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 20

𝑥1

𝑤1𝑥1 + 𝑤0

𝑦

1

-1

Step Function → Smooth Function

• Perceptron
𝑓 𝒙 = 𝑠𝑖𝑔𝑛(𝒘𝑇𝒙)

• Hyperbolic tangent activation

𝑓 𝒙 = tanh 𝒘𝑇𝒙 =
1 − 𝑒−𝒘𝑇𝒙

1 + 𝑒−𝒘𝑇𝒙

• tanh() is a scaled logistic sigmoid function
tanh 𝑥 = 2𝜎 𝑥 − 1

𝜎 𝑥 =
1

1 + 𝑒−𝑥

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 21

Logistic Sigmoid Function

𝜎 𝑥 =
1

1 + 𝑒−𝑥
 𝜎 𝑤𝑥 =

1

1 + 𝑒−𝑤𝑥

• As 𝒘 increases, it approximates the step function more closely

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 22

𝑥 𝑥

𝜎 𝑥 𝜎 𝑤𝑥

Logistic and Logit

• Logistic function

𝑦 = 𝜎 𝑥 =
1

1 + 𝑒−𝑥
, 𝑥 ∈ ℝ

• Logit function: the inverse function

𝑥 = 𝑙𝑜𝑔𝑖𝑡 𝑦 = log
𝑦

1 − 𝑦
, 0 < y < 1

– If 𝑦 is viewed as probability of one class, then 1 − 𝑦 is the probability of the other class

– Logit is then the log of their ratio, or log of odds

• The word “logistic” is related to “logic”, and “logarithmic”

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 23

Logistic Regression with Squared Error

• Minimize squared error loss

𝐸 𝒘 =
1

2
෍

𝑖=1

𝑁

𝑦 𝑖 − tanh 𝒘𝑇𝒙 𝑖 2

• This is essentially regression with squared error using the tanh ⋅ function,
which is a scaled logistic function; this is why it’s called “logistic regression”

• This function is not convex w.r.t. 𝒘, but we can still use gradient descent to

find a local optimum

∇𝐸 𝒘 = ෍

𝑖=1

𝑁

𝑦 𝑖 −
2

1 + 𝑒−𝒘𝑇𝒙(𝑖) + 1
2

1 + 𝑒−𝒘𝑇𝒙(𝑖) 2 𝑒−𝒘𝑇𝒙(𝒊)
(−𝒙(𝑖))

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 24

Logistic Regression with Squared Error

• Let’s look at the error for each example

 𝐸𝑝 𝒘 =
1

2
𝑦 − tanh 𝒘𝑇𝒙 2

 =
1

2
൝

1 − 2𝜎 𝒘𝑇𝒙 + 1 2 𝑖𝑓 𝑦 = +1

−1 − 2𝜎 𝒘𝑇𝒙 + 1 2 𝑖𝑓 𝑦 = −1

 = 2 ൝
𝜎2 −𝒘𝑇𝒙 𝑖𝑓 𝑦 = +1

𝜎2 𝒘𝑇𝒙 𝑖𝑓 𝑦 = −1

 = 2𝜎2(−𝑦𝒘𝑇𝒙)

• Bigger loss if 𝑦 and 𝒘𝑇𝒙 have different signs
– But perhaps not big enough for very wrong 𝒘𝑇𝒙

• This is not convex for y𝒘𝑇𝒙

– So not convex for 𝒘

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 25

𝑦𝒘𝑇𝒙

𝐸𝑝 𝒘

0

2

1

2

Logistic Regression with Log Error

• Define point-wise log error cost

𝐸𝑝 𝒘 = ቐ
− log 𝜎 𝒘𝑇𝒙 𝑖𝑓 𝑦 = +1

− log 𝜎 −𝒘𝑇𝒙 𝑖𝑓 𝑦 = −1

= − log 𝜎 𝑦𝒘𝑇𝒙 = log 1 + 𝑒−𝑦𝒘𝑇𝒙

• Much bigger loss when 𝑦 and 𝒘𝑇𝒙 have different signs

• This is convex for y𝒘𝑇𝒙

– So convex for 𝒘

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 26

𝑦𝒘𝑇𝒙

𝐸𝑝 𝒘

0

log 2

Logistic Regression with Log Error

• Sum all point-wise log error together → Softmax Loss

𝐸 𝒘 = ෍

𝑖=1

𝑁

log 1 + 𝑒−𝑦(𝑖)𝒘𝑇𝒙(𝑖)

• This is a convex function of 𝒘 !

• Compute gradient w.r.t. 𝒘, then take gradient descent

∇𝐸 𝒘 = − ෍

𝑖=1

𝑁
𝑒−𝑦(𝑖)𝒘𝑇𝒙(𝑖)

1 + 𝑒−𝑦(𝑖)𝒘𝑇𝒙(𝑖) 𝑦(𝑖)𝒙(𝑖)

• Or compute Hessian and then use Newton’s method

∇2𝐸 𝒘 = ෍

𝑖=1

𝑁

𝜎 𝑦 𝑖 𝒘𝑇𝒙 𝑖 𝟏 − 𝜎 𝑦 𝑖 𝒘𝑇𝒙 𝑖 𝒙(𝑖)𝒙 𝑖 T

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 27

Why Called Softmax?

• Without loss of generality, assume a < b
max 𝑎, 𝑏 = 𝑏

 = 𝑎 + 𝑏 − 𝑎 = log 𝑒𝑎 + log 𝑒𝑏−𝑎

 < log 𝑒𝑎 + log 1 + 𝑒𝑏−𝑎

= log 𝑒𝑎 + 𝑒𝑏

≐ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥{𝑎, 𝑏}

• Single-sample log error cost

log 1 + 𝑒−𝑦 𝑖 𝒘𝑇𝒙 𝑖
= log 𝑒0 + 𝑒−𝑦 𝑖 𝒘𝑇𝒙 𝑖

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 0, −𝑦 𝑖 𝒘𝑇𝒙 𝑖

• The log error cost is thus the softmax between 0 and −𝑦 𝑖 𝒘𝑇𝒙 𝑖

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 28

Softmax vs. Max

• Remember perceptron criterion function

𝐸 𝒘 = ෍

𝑖 ∈ 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

−𝒘𝑇𝒙(𝑖) y 𝑖 − 𝑓 𝒙 𝑖

= ෍

𝑖 ∈ 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

−2y 𝑖 𝒘𝑇𝒙(𝑖) > 0

• For correctly classified examples, the loss is 0

• Therefore, its single-sample loss is max 0, −2y 𝑖 𝒘𝑇𝒙 𝑖

– If we neglect the scale 2, then it’s max 0, −y 𝑖 𝒘𝑇𝒙 𝑖

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 29

(Fig. 6.12 in WBK)

−y 𝑖 𝒘𝑇𝒙 𝑖

Softmax 0, −y 𝑖 𝒘𝑇𝒙 𝑖

max 0, −y 𝑖 𝒘𝑇𝒙 𝑖

Also called rectified linear
unit (ReLU) or hinge loss

Comparing Four Losses

• Perceptron criterion function (perceptron update rule)

𝐸 𝒘 = ෍

𝑖 ∈ 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

−𝒘𝑇𝒙(𝑖) y 𝑖 − 𝑓 𝒙 𝑖 = ෍

𝑖=1

𝑁

max 0, −2y 𝑖 𝒘𝑇𝒙 𝑖

• Perceptron squared error (delta rule)

𝐸 𝒘 =
1

2
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 2
=

1

2
෍

𝑖=1

𝑁

1 − 𝑦 𝑖 𝒘𝑇𝒙 𝑖 2

• Logistic regression with squared error

𝐸 𝒘 =
1

2
෍

𝑖=1

𝑁

𝑦 𝑖 − tanh 𝒘𝑇𝒙 𝑖 2
= 2 ෍

𝑖=1

𝑁
𝑒−𝑦 𝑖 𝒘𝑇𝒙 𝑖

1 + 𝑒−𝑦 𝑖 𝒘𝑇𝒙 𝑖

2

• Logistic regression with log error

𝐸 𝒘 = ෍

𝑖=1

𝑁

log 1 + 𝑒−𝑦(𝑖)𝒘𝑇𝒙(𝑖)

• Let’s draw them on whiteboard!

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 30

Multi-Class Classification

• How do we generalize binary linear classification to multiple (e.g., 𝐶) classes?

• First idea: train 𝐶 one-versus-all classifiers

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 31

(Figs. 7.2 and 7.3 of WBK)

Claimed by many?

Claimed by
no one?

Distance from Classification Boundary

• If 𝒙 is on the positive side

– Distance is
𝒘𝑇𝒙

𝒘 𝟐

• If 𝒙 is on the negative side

– Distance is −
𝒘𝑇𝒙

𝒘 𝟐

• If we assume 𝒘 is
normalized as 𝒘 𝟐 = 1,

then the signed distance is
simply 𝒘𝑇𝒙

• This normalization can be
achieved by regularization

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 32

𝑥1

𝑥0

𝒙

𝒘

𝒘𝑇𝒙

Fusing all OvA Classifiers Together

• Output the class whose OvA classification boundary has the largest signed
distance to the example

ො𝑦 = arg max𝑗=0,⋯,𝐶−1 𝒘𝑗
𝑇𝒙, s. t. 𝒘 𝟐 = 1

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 33

Multi-Class Perceptron

• We hope that the signed distance between each training example and the binary
classification boundary of its target class is the largest

• If it’s not, then this example is likely misclassified

• Based on this idea, we can define a loss function

𝐸 𝒘0, ⋯ , 𝒘𝐶−1 = ෍

𝑖=1

𝑁

max
𝑗=0,⋯,𝐶−1

𝒘𝑗
𝑇𝒙 𝑖 − 𝒘

𝑦(𝑖)
𝑇 𝒙(𝑖)

= ෍

𝑖=1

𝑁

max
𝑗=0,⋯,𝐶−1

𝑗≠𝑦(𝑖)

0, 𝒘𝑗 − 𝒘𝑦 𝑖

𝑇
𝒙 𝑖

• This is similar to the binary Perceptron Criterion Function, convex but has non-differentiable
points

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 34

Max → Softmax

• A new loss function

𝐸 𝒘0, ⋯ , 𝒘𝐶−1 = ෍

𝑖=1

𝑁

softmax
𝑗=0,⋯,𝐶−1

𝒘𝑗
𝑇𝒙 𝑖 − 𝒘

𝑦(𝑖)
𝑇 𝒙(𝑖)

= ෍

𝑖=1

𝑁

log ෍

𝑗=0

𝐶−1

𝑒𝒘𝑗
𝑇𝒙 𝑖

− 𝒘
𝑦(𝑖)
𝑇 𝒙(𝑖)

= − ෍

𝑖=1

𝑁

log
𝑒

𝒘
𝑦(𝑖)
𝑇 𝒙 𝑖

σ𝑗=0
𝐶−1 𝑒𝒘𝑗

𝑇𝒙 𝑖

• This is convex and smooth!

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 35

Classification Boundaries

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 36

• Multi-class perceptron learns all 𝐶 binary classifiers simultaneously

– Each single binary classifier may not be the best OvA classifier, but the fused classifier is
usually better than the naïve fusion of 𝐶 independently trained OvA classifiers

(Fig. 4.20 in WBK 1st ed.)

Summary

• Classification boundaries of linear classifiers are linear
functions of the input features. They are hyperplanes.

• Perceptron uses a step function across the classification
boundary. Its optimization has two main variants

– Perceptron criterion function (max, hinge loss, ReLU) →

perceptron update rule

– Perceptron with squared error → delta rule

• Logistic regression uses hyperbolic tangent function to
replace the step function. Its optimization has two main
variants

– Logistic regression with squared error (not convex)

– Logistic regression with log error (softmax)

• Loss comparisons 𝐸 𝒘 vs. −𝑦𝒘𝑇𝒙

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 37

Summary

• Multi-class classification

– One-versus-All (OvA): train binary classifiers independently, then fuse based on signed
distance from classification boundaries

– Multi-class perceptron: train binary classifiers simultaneously; fusion is inside the model.
Two variants of loss functions:

• Max: extension of the binary-class perceptron criterion function (i.e., perceptron update rule)

• Softmax: extension of the binary-class logistic regression with log error

• The learned binary classifiers may not be the optimal OvA classifiers, but the learned multi-
class classifier is usually better than the post fusion of independently trained OvA classifiers

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 38

	Default Section
	Slide 1: Linear Classification
	Slide 2: Classification Boundary
	Slide 3: Linear Classification Boundary
	Slide 4: Let’s draw a linear boundary
	Slide 5: Linear Boundary
	Slide 6: Geometry of the Extended Space
	Slide 7: Perceptron
	Slide 8: Perceptron’s Representation Power
	Slide 9: How to Learn a Perceptron?
	Slide 10: Perceptron Update Rule
	Slide 11: How about non-linearly separable cases?
	Slide 12: Perceptron Criterion Function
	Slide 13: Comparing the Two Update Rules
	Slide 14: Another Loss Function
	Slide 15: The Hypothesis Space
	Slide 16: Delta Rule
	Slide 17: Delta Rule’s Stochastic Version
	Slide 18: Another Way to Minimize Squared Error
	Slide 19: Remarks on Squared Error Minimization
	Slide 20: Geometric Interpretation of Squared Error
	Slide 21: Step Function  Smooth Function
	Slide 22: Logistic Sigmoid Function
	Slide 23: Logistic and Logit
	Slide 24: Logistic Regression with Squared Error
	Slide 25: Logistic Regression with Squared Error
	Slide 26: Logistic Regression with Log Error
	Slide 27: Logistic Regression with Log Error
	Slide 28: Why Called Softmax?
	Slide 29: Softmax vs. Max
	Slide 30: Comparing Four Losses
	Slide 31: Multi-Class Classification
	Slide 32: Distance from Classification Boundary
	Slide 33: Fusing all OvA Classifiers Together
	Slide 34: Multi-Class Perceptron
	Slide 35: Max  Softmax
	Slide 36: Classification Boundaries
	Slide 37: Summary
	Slide 38: Summary

