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Classification Boundary

• Classification: given training examples 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
, learn 𝑓:  𝒙 ↦ 𝑦, 

where 𝑦 is categorical

• If 𝒙 is numerical and has 𝑑 attributes, then it is a 𝑑-dimension vector
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(Fig. 2.5(a) in LWLS)

Nearest Neighbor Decision Tree (fully grown)

(Fig. 2.11(a) in LWLS)



Linear Classification Boundary
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(Fig. 3.6 in LWLS)

Logistic Regression

Note: Logistic regression is in fact a classification method, not a regression method



Let’s draw a linear boundary

• A linear boundary is a hyperplane, represented as a linear equation
𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑑𝑥𝑑 = 0

• It separates the space into two half spaces
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Linear Boundary

• A linear boundary is a linear equation:
𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑑𝑥𝑑 = 0

𝑤0 𝑤1 … 𝑤𝑑

1
𝑥1

⋮
𝑥𝑑

= 0, or 𝒘𝑇 1
𝒙

= 0

• 𝒘 is the weight vector

•
1
𝒙

 is the extended feature vector (𝑑 + 1 dimensional)

• For convenience, we will view 𝒙 as the extended feature vector 

𝒙 = 𝑥0, 𝑥1, … , 𝑥𝑑
𝑇 where 𝑥0 = 1

• So 𝒘𝑇𝒙 = 0 on the boundary (hyperplane), 𝒘 is the normal vector

• 𝒘𝑇𝒙 > 0 on one side and 𝒘𝑇𝒙 < 0 on the other side
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Geometry of the Extended Space

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 6

Classification 
hyperplane 

always passing 
through origin

Hyperplane of 
data points

Normal vector of the 
classification hyperplane

𝑥0

𝑥1

𝑥2



Perceptron

• Perceptron is a function that maps 𝒙 to either 1 or -1
𝑓 𝒙 = 𝑠𝑖𝑔𝑛(𝒘𝑇𝒙)

• This is a linear binary classifier where one side of the classification 
boundary is 1 and the other side is -1
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Perceptron’s Representation Power

• Basic logic operations: AND, OR, NOT

– They are all linearly separable

• How about XOR?

– Not linearly separable
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How to Learn a Perceptron?

• Perceptron is a function mapping 𝒙 to either 1 or -1
𝑓 𝒙 = 𝑠𝑖𝑔𝑛(𝒘𝑇𝒙)

• How to learn this function, i.e., the weights 𝒘?

• One idea is to start from an initial vector 𝒘, and then iteratively update its 
value till some condition

• This is an optimization procedure

– Initialization: Random?

– Iterative updates: How?

– Termination condition: What?
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Perceptron Update Rule

• Initialization: Random

• Iterative updates: Update 𝒘 for each misclassified training 

example

• Termination condition: Till all examples are correctly classified
– Would not terminate if training examples are not linearly separable

• Idea
– For a misclassified positive example,

update 𝒘 along the example’s direction

– For a misclassified negative example,

update w along the example’s reverse direction

𝒘 ← 𝒘 + 𝜂 y i − 𝑓 𝒙 i 𝒙(i)

Step size 𝜂 > 0, usually small

• Always converges for linearly separable cases!
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How about non-linearly separable cases?

• Linear classification may still be desirable even if it 
misclassifies some training examples

• The perceptron update rule does not work in this case! 
Why?

– Each update considers only one misclassified training example.

• How about we consider all misclassified training example 
together for each update?

• One thought: perhaps update 𝒘 to reduce the number of 
misclassifications? 

– Doesn’t work because this quantity is piecewise constant!
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Perceptron Criterion Function

• Minimize perceptron criterion function  

𝐸 𝒘 = ෍

𝑖 ∈ 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

−𝒘𝑇𝒙(𝑖) y 𝑖 − 𝑓 𝒙 𝑖

• Computer gradient w.r.t. 𝒘

𝛁𝒘𝐸 𝒘 = ෍

𝑖 ∈ 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

−𝒙(𝑖) y 𝑖 − 𝑓 𝒙 𝑖

• Update rule (via gradient descent)

𝒘 ← 𝒘 + 𝜂 ෍

𝑖 ∈ 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝒙(𝑖) y 𝑖 − 𝑓 𝒙 𝑖

• Terminate till classification error is acceptable
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2 (pos example) or -2 (neg example)



Comparing the Two Update Rules

• Perceptron update rule

𝒘 ← 𝒘 + 𝜂 y 𝑖 − 𝑓 𝒙 𝑖 𝒙(𝑖),    ∀𝑖 ∈  𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

• Perceptron criterion function update rule 

𝒘 ← 𝒘 + 𝜂 ෍

𝑖 ∈ 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝒙(𝑖) y 𝑖 − 𝑓 𝒙 𝑖

• The former can be viewed as a stochastic approximation of the true 
gradient of the perception criterion function

– Also called stochastic gradient descent

• Using one example to approximate the gradient may be too 
stochastic. Let’s use a few examples instead

– Batch processing: 

𝒘 ← 𝒘 + 𝜂 ෍

𝑖 ∈𝑎 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝒙(𝑖) y 𝑖 − 𝑓 𝒙 𝑖

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 13



Another Loss Function

• For non-linearly separable cases, the perceptron criterion 
update rule may still not converge if the termination 
condition is not set appropriately

– Because correctly classified examples may be misclassified after 
update!

• How about we define a loss function that considers all 
training examples, including the correctly classified 
ones?

• We hope 𝒘𝑇𝒙 is close to 𝑦 for all training examples

• Let’s use squared error (some definition divides it by 𝑁)

𝐸 𝒘 =
1

2
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 2
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The Hypothesis Space

𝐸 𝒘 =
1

2
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 2

• Quadratic function of 𝒘

• Convex!

• Global minimum 

(if it has a minimum)

• How to minimize 𝐸(𝒘)?
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Delta Rule

• Also called the LMS (least-mean-square) rule, Widrow-Hoff rule)

• Minimize square error loss

𝐸 𝒘 =
1

2
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 2

• Computer gradient w.r.t. 𝒘

𝛁𝒘𝐸 𝒘 = ෍

𝑖=1

𝑁

−𝒙(𝑖) y 𝑖 − 𝒘𝑇𝒙 𝑖

• Update rule (via gradient descent)

𝒘 ← 𝒘 + 𝜂 ෍

𝑖=1

𝑁

𝒙(𝑖) y 𝑖 − 𝒘𝑇𝒙 𝑖

• Always converges, although may take a very long time
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Delta Rule’s Stochastic Version

• Similar to the perceptron update rule, we could approximate the true 
gradient of the squared error loss with the stochastic gradient computed 
from a single training example, then the update rule is:

𝒘 ← 𝒘 + 𝜂𝒙(𝑖) y 𝑖 − 𝒘𝑇𝒙 𝑖

• We can also use a batch to have a better approximation

𝒘 ← 𝒘 + 𝜂 ෍

𝑖∈𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝒙(𝑖) y 𝑖 − 𝒘𝑇𝒙 𝑖
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Another Way to Minimize Squared Error

𝐸 𝒘 =
1

2
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 2

=
1

2
𝑿𝒘 − 𝒚 2

where 𝑿 ∈ ℝ𝑁×(𝑑+1) is the extended training data matrix, 𝒚 ∈ {−1, 1}𝑁 is the 

label vector

• This is the approximation error (L2 norm) of the linear equation system
𝑿𝒘 = 𝒚

• This error is minimized by the least-square solution
𝒘 = 𝑿𝑇𝑿 −1𝑿𝑇𝒚
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Pseudo-inverse of 𝑿



Remarks on Squared Error Minimization

• Delta rule is preferred over the least-square solution, 
because

– 𝑿𝑇𝑿 may be singular

– It avoids large matrix inverse

– Automatically copes with some computational problems due to 
roundoff or truncation
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• The solution 𝒘 found by minimizing 

the squared error may not be 
optimal in terms of minimizing the 
classification error among all linear 
classification methods, even for 
linearly separable cases!

(Fig. 5.17 in Duda, Hart & Stork, Pattern Classification, 2001, Wiley)



Geometric Interpretation of Squared Error

• Let’s look at the 1d case

• 𝐸 𝒘 =
1

2
σ𝑖=1

𝑁 𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 2
 is fitting the training data 

using linear regression with squared error

• Correctly classified examples (points far from origin) may 
have a significant contribution to this loss!
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Step Function → Smooth Function

• Perceptron
𝑓 𝒙 = 𝑠𝑖𝑔𝑛(𝒘𝑇𝒙)

• Hyperbolic tangent activation

𝑓 𝒙 = tanh 𝒘𝑇𝒙 =
1 − 𝑒−𝒘𝑇𝒙

1 + 𝑒−𝒘𝑇𝒙

• tanh() is a scaled logistic sigmoid function
tanh 𝑥 = 2𝜎 𝑥 − 1

𝜎 𝑥 =
1

1 + 𝑒−𝑥
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Logistic Sigmoid Function

𝜎 𝑥 =
1

1 + 𝑒−𝑥
 𝜎 𝑤𝑥 =

1

1 + 𝑒−𝑤𝑥

• As 𝒘  increases, it approximates the step function more closely
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Logistic and Logit

• Logistic function

𝑦 = 𝜎 𝑥 =
1

1 + 𝑒−𝑥
, 𝑥 ∈ ℝ

• Logit function: the inverse function

𝑥 = 𝑙𝑜𝑔𝑖𝑡 𝑦 = log
𝑦

1 − 𝑦
, 0 < y < 1

– If 𝑦 is viewed as probability of one class, then 1 − 𝑦 is the probability of the other class

– Logit is then the log of their ratio, or log of odds

• The word “logistic” is related to “logic”, and “logarithmic” 
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Logistic Regression with Squared Error

• Minimize squared error loss

𝐸 𝒘 =
1

2
෍

𝑖=1

𝑁

𝑦 𝑖 − tanh 𝒘𝑇𝒙 𝑖 2

• This is essentially regression with squared error using the tanh ⋅  function, 
which is a scaled logistic function; this is why it’s called “logistic regression”

• This function is not convex w.r.t. 𝒘, but we can still use gradient descent to 

find a local optimum

∇𝐸 𝒘 = ෍

𝑖=1

𝑁

𝑦 𝑖 −
2

1 + 𝑒−𝒘𝑇𝒙(𝑖) + 1
2

1 + 𝑒−𝒘𝑇𝒙(𝑖) 2 𝑒−𝒘𝑇𝒙(𝒊)
(−𝒙(𝑖))
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Logistic Regression with Squared Error

• Let’s look at the error for each example

 𝐸𝑝 𝒘 =
1

2
𝑦 − tanh 𝒘𝑇𝒙 2

 =
1

2
൝

1 − 2𝜎 𝒘𝑇𝒙 + 1 2 𝑖𝑓 𝑦 = +1

−1 − 2𝜎 𝒘𝑇𝒙 + 1 2 𝑖𝑓 𝑦 = −1

 = 2 ൝
𝜎2 −𝒘𝑇𝒙  𝑖𝑓 𝑦 = +1

𝜎2 𝒘𝑇𝒙  𝑖𝑓 𝑦 = −1

                              = 2𝜎2(−𝑦𝒘𝑇𝒙)

• Bigger loss if 𝑦 and 𝒘𝑇𝒙 have different signs
– But perhaps not big enough for very wrong 𝒘𝑇𝒙

• This is not convex for y𝒘𝑇𝒙

– So not convex for 𝒘
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Logistic Regression with Log Error

• Define point-wise log error cost

𝐸𝑝 𝒘 = ቐ
− log 𝜎 𝒘𝑇𝒙  𝑖𝑓 𝑦 = +1

− log 𝜎 −𝒘𝑇𝒙  𝑖𝑓 𝑦 = −1

= − log 𝜎 𝑦𝒘𝑇𝒙 = log 1 + 𝑒−𝑦𝒘𝑇𝒙

• Much bigger loss when 𝑦 and 𝒘𝑇𝒙 have different signs

• This is convex for y𝒘𝑇𝒙

– So convex for 𝒘
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Logistic Regression with Log Error

• Sum all point-wise log error together → Softmax Loss

𝐸 𝒘 = ෍

𝑖=1

𝑁

log 1 + 𝑒−𝑦(𝑖)𝒘𝑇𝒙(𝑖)

• This is a convex function of 𝒘 !

• Compute gradient w.r.t. 𝒘, then take gradient descent

∇𝐸 𝒘 = − ෍

𝑖=1

𝑁
𝑒−𝑦(𝑖)𝒘𝑇𝒙(𝑖)

1 + 𝑒−𝑦(𝑖)𝒘𝑇𝒙(𝑖) 𝑦(𝑖)𝒙(𝑖)

• Or compute Hessian and then use Newton’s method

∇2𝐸 𝒘 = ෍

𝑖=1

𝑁

𝜎 𝑦 𝑖 𝒘𝑇𝒙 𝑖 𝟏 − 𝜎 𝑦 𝑖 𝒘𝑇𝒙 𝑖 𝒙(𝑖)𝒙 𝑖 T
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Why Called Softmax?

• Without loss of generality, assume a < b 
max 𝑎, 𝑏 = 𝑏

 = 𝑎 + 𝑏 − 𝑎 = log 𝑒𝑎 + log 𝑒𝑏−𝑎

 < log 𝑒𝑎 + log 1 + 𝑒𝑏−𝑎

= log 𝑒𝑎 + 𝑒𝑏

≐ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥{𝑎, 𝑏}

• Single-sample log error cost

log 1 + 𝑒−𝑦 𝑖 𝒘𝑇𝒙 𝑖
= log 𝑒0 + 𝑒−𝑦 𝑖 𝒘𝑇𝒙 𝑖

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 0, −𝑦 𝑖 𝒘𝑇𝒙 𝑖

• The log error cost is thus the softmax between 0 and −𝑦 𝑖 𝒘𝑇𝒙 𝑖
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Softmax vs. Max

• Remember perceptron criterion function  

𝐸 𝒘 = ෍

𝑖 ∈ 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

−𝒘𝑇𝒙(𝑖) y 𝑖 − 𝑓 𝒙 𝑖

= ෍

𝑖 ∈ 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

−2y 𝑖 𝒘𝑇𝒙(𝑖) > 0

• For correctly classified examples, the loss is 0

• Therefore, its single-sample loss is max 0, −2y 𝑖 𝒘𝑇𝒙 𝑖

– If we neglect the scale 2, then it’s max 0, −y 𝑖 𝒘𝑇𝒙 𝑖
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(Fig. 6.12 in WBK)

−y 𝑖 𝒘𝑇𝒙 𝑖

Softmax 0, −y 𝑖 𝒘𝑇𝒙 𝑖

max 0, −y 𝑖 𝒘𝑇𝒙 𝑖

Also called rectified linear 
unit (ReLU) or hinge loss



Comparing Four Losses

• Perceptron criterion function (perceptron update rule)

𝐸 𝒘 = ෍

𝑖 ∈ 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

−𝒘𝑇𝒙(𝑖) y 𝑖 − 𝑓 𝒙 𝑖 = ෍

𝑖=1

𝑁

max 0, −2y 𝑖 𝒘𝑇𝒙 𝑖

• Perceptron squared error (delta rule)

𝐸 𝒘 =
1

2
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 2
=

1

2
෍

𝑖=1

𝑁

1 − 𝑦 𝑖 𝒘𝑇𝒙 𝑖 2

• Logistic regression with squared error

𝐸 𝒘 =
1

2
෍

𝑖=1

𝑁

𝑦 𝑖 − tanh 𝒘𝑇𝒙 𝑖 2
= 2 ෍

𝑖=1

𝑁
𝑒−𝑦 𝑖 𝒘𝑇𝒙 𝑖

1 + 𝑒−𝑦 𝑖 𝒘𝑇𝒙 𝑖

2

• Logistic regression with log error

𝐸 𝒘 = ෍

𝑖=1

𝑁

log 1 + 𝑒−𝑦(𝑖)𝒘𝑇𝒙(𝑖)

• Let’s draw them on whiteboard!
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Multi-Class Classification

• How do we generalize binary linear classification to multiple (e.g., 𝐶) classes?

• First idea: train 𝐶 one-versus-all classifiers
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(Figs. 7.2 and 7.3 of WBK)

Claimed by many?

Claimed by 
no one?



Distance from Classification Boundary

• If 𝒙 is on the positive side

– Distance is 
𝒘𝑇𝒙

𝒘 𝟐

• If 𝒙 is on the negative side

– Distance is −
𝒘𝑇𝒙

𝒘 𝟐

• If we assume 𝒘 is 
normalized as 𝒘 𝟐 = 1, 

then the signed distance is 
simply 𝒘𝑇𝒙

• This normalization can be 
achieved by regularization
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𝑥1

𝑥0

𝒙

𝒘

𝒘𝑇𝒙



Fusing all OvA Classifiers Together

• Output the class whose OvA classification boundary has the largest signed 
distance to the example

ො𝑦 = arg max𝑗=0,⋯,𝐶−1 𝒘𝑗
𝑇𝒙,  s. t. 𝒘 𝟐 = 1
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Multi-Class Perceptron

• We hope that the signed distance between each training example and the binary 
classification boundary of its target class is the largest

• If it’s not, then this example is likely misclassified

• Based on this idea, we can define a loss function

𝐸 𝒘0, ⋯ , 𝒘𝐶−1 = ෍

𝑖=1

𝑁

max
𝑗=0,⋯,𝐶−1

𝒘𝑗
𝑇𝒙 𝑖 − 𝒘

𝑦(𝑖)
𝑇 𝒙(𝑖)

= ෍

𝑖=1

𝑁

max
𝑗=0,⋯,𝐶−1

𝑗≠𝑦(𝑖)

0, 𝒘𝑗 − 𝒘𝑦 𝑖

𝑇
𝒙 𝑖

• This is similar to the binary Perceptron Criterion Function, convex but has non-differentiable 
points
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Max → Softmax

• A new loss function

𝐸 𝒘0, ⋯ , 𝒘𝐶−1 = ෍

𝑖=1

𝑁

softmax
𝑗=0,⋯,𝐶−1

𝒘𝑗
𝑇𝒙 𝑖 − 𝒘

𝑦(𝑖)
𝑇 𝒙(𝑖)

= ෍

𝑖=1

𝑁

log ෍

𝑗=0

𝐶−1

𝑒𝒘𝑗
𝑇𝒙 𝑖

− 𝒘
𝑦(𝑖)
𝑇 𝒙(𝑖)

= − ෍

𝑖=1

𝑁

log
𝑒

𝒘
𝑦(𝑖)
𝑇 𝒙 𝑖

σ𝑗=0
𝐶−1 𝑒𝒘𝑗

𝑇𝒙 𝑖

• This is convex and smooth!
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Classification Boundaries
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• Multi-class perceptron learns all 𝐶 binary classifiers simultaneously

– Each single binary classifier may not be the best OvA classifier, but the fused classifier is 
usually better than the naïve fusion of 𝐶 independently trained OvA classifiers

(Fig. 4.20 in WBK 1st ed.)



Summary

• Classification boundaries of linear classifiers are linear 
functions of the input features. They are hyperplanes.

• Perceptron uses a step function across the classification 
boundary. Its optimization has two main variants

– Perceptron criterion function (max, hinge loss, ReLU) → 

perceptron update rule

– Perceptron with squared error → delta rule

• Logistic regression uses hyperbolic tangent function to 
replace the step function. Its optimization has two main 
variants

– Logistic regression with squared error (not convex)

– Logistic regression with log error (softmax)

• Loss comparisons 𝐸 𝒘  vs. −𝑦𝒘𝑇𝒙
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Summary

• Multi-class classification

– One-versus-All (OvA): train binary classifiers independently, then fuse based on signed 
distance from classification boundaries

– Multi-class perceptron: train binary classifiers simultaneously; fusion is inside the model. 
Two variants of loss functions:

• Max: extension of the binary-class perceptron criterion function (i.e., perceptron update rule) 

• Softmax: extension of the binary-class logistic regression with log error

• The learned binary classifiers may not be the optimal OvA classifiers, but the learned multi-
class classifier is usually better than the post fusion of independently trained OvA classifiers
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